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Abstract

High-density inorganic nanoparticles have shown promise in medical applications that utilize radiation including
X-ray imaging and as radiation dose enhancers for radiotherapy. We have developed an aqueous synthetic method
to produce small (~ 2 nm) iridium nanoparticles (IrNPs) by reduction of iridium(III) chloride using a borohydride
reducing agent. Unlike other solution-based synthesis methods, uniform and monodispersed IrNPs are produced
without the use of surfactants or other solubilizing ligands. These nanoparticles are highly crystalline as observed by
X-ray diffraction and high-resolution transmission electron microscopy (TEM). In vitro metabolic toxicity assays using
hepatocyte and macrophage cells demonstrate that both IrNPs and iridium(III) chloride are well tolerated at
concentrations of up to 10 μM iridium. Furthermore, the IrNPs were assessed in a hemolytic assay and found to
have no significant impact on red blood cells when exposed to concentrations up to 100 μM. Overall, these results
support the potential for the in vivo application of this nanomaterial.
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Background
Noble metal nanoparticles are a mainstay of emerging
nanotechnologies due to their interesting optical, elec-
tronic, and surface catalytic properties. In nanomedicine,
these unique biomaterials have drawn significant atten-
tion due the ability to tailor their biological interactions
through surface modifications for a wide range of
applications [1]. Gold nanoparticles (AuNPs) have been
investigated extensively for sensing and therapeutic
applications [2, 3], while other noble metals, including
silver, have found niche uses such as anti-microbials [4].
However, nanoparticles composed of platinoid elements,
which are commonly employed for their surface catalytic
properties [5], have yet to be thoroughly examined for
biomedical applications. The exceptional surface stability
and known biological compatibility of these elements, as
well as their potential novel physical properties on the
nanoscale, make them unique alternatives to AuNPs.

High-energy radiation is utilized extensively in medi-
cine including in diagnostic imaging and radiation ther-
apy. Therefore, functional materials that interact with
radiation, such as high atomic number and high-density
nanoparticles, may improve the performance of these
modalities. The majority of the chemical and engineer-
ing studies to date have focused on AuNPs to enhance
radiation interactions, although bismuth and hafnium
have been examined for diagnostic and therapeutic
applications respectively [6, 7].
Here, we present a synthetic method to produce irid-

ium nanoparticles (IrNPs), which are predicted to have
strong radiation attenuation due to its high density.
Iridium is one of the least reactive metals, considered
generally biologically compatible, and has an elemental
density of 22.56 g/cm3 (second only to osmium, which is
known to be highly toxic). An isotope of iridium, 192Ir, is
a commonly used brachytherapy gamma emitter, and
part of the success of this material is due to the high
density, i.e., the large number of atoms in a small vol-
ume of the material. In the current study, we present the
synthesis of IrNPs and their in vitro biocompatibility as
well as that of iridium ions, which has not previously
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been evaluated in the selected cell lines. These novel
IrNPs have not been readily explored for medical pur-
poses despite the material’s chemical inertness and su-
perior density. Although iridium is a relatively expensive
material like other noble metals, its current value as a
commodity is approximately three quarters the price of
gold and half that of rhodium, making it an interesting
economic alternative.

Methods
Synthesis of IrNPs
All synthesis reactions were performed at room
temperature under aerobic conditions in purified 18 MΩ
water. A 20 mM iridium (III) chloride (Acros Organics)
stock was prepared by bath sonication and stirred for at
least 20 min to generate an optically clear solution. A
solution of 1.0 M borane morpholine (Alfa Aesar) was
also prepared by bath sonication. For larger scale synthe-
ses of 500 mL total volume, 25 mL iridium (III) chloride
solution was used (diluted to 1.0 mM) and 5.0 mL borane
morpholine was added (final 10 mM concentration) with
rapid stirring. The solution gradually turned from dark
brown to black over 30 min. The nanoparticles were
allowed to stabilize for at least 60 min. This colloidal solu-
tion was directly added to centrifugal spin filters (Amicon
Ultra-4, 10k MWCO regenerated cellulose), and the nano-
particles were collected at 4000×g and washed in purified
water. The nanoparticles were then suspended in water,
passed through a syringe filter (Millex-MP 0.22 μm EO),
and stored for quantification.

Nanoparticle Characterization
For X-ray photoelectron spectroscopy (XPS) analysis,
nanoparticles were suspended in an equal volume nitric
acid, collected by centrifugation in a microcentrifuge
tube (5 min, 17 rcf ), and suspended in water prior to
analysis. Transmission electron microscopy (TEM) was
performed on an FEI Tecnai F-20 TEM operating at
200 kV. Purified IrNPs were drop-cast on holey carbon
Cu supported TEM grids (Ted Pella) and dried at room
temperature overnight. Line diffraction analysis was per-
formed using ImageJ software analysis. For X-ray diffrac-
tion (XRD) analysis, concentrated IrNPs were drop-cast
on a glass slide and dried at room temperature. XRD
data were collected in focused beam (Bragg–Brentano)
geometry on a Rigaku Ultima IV X-ray diffraction sys-
tem using graphite monochromatized Cu Kα radiation.
Scans were performed over the angular range 20–80° 2θ
at a scan rate of 0.1°/min at room temperature. Dynamic
light scattering (DLS) was performed on a Malvern
Nano ZSP in disposable polystyrene cuvettes. Nanoparti-
cles were suspended in water, and data is reported as
distributed by number. UV-Vis absorbance spectra were
collected on a Tecan M200 Pro in a black 96-well plate

and a total solution volume of 100 μL. Concentrations of
iridium were adjusted to illustrate relative absorbance
peaks. XPS analysis was carried out on a PHI Versap-
robe II fitted with a hemispherical electron analyzer and
aluminum Kɑ (1486.7 eV) X-ray source. Spectrum ana-
lysis was performed using the Multipak software suite.
Binding energy calibration was performed using the C1s
peak at 284.6 eV, and peak fitting was based on asym-
metric peaks and an iterated Shirley background, result-
ing in a chi-squared value of 1.13. Inductively coupled
plasma mass spectrometry (ICP-MS) of IrNPs and iri-
dium(III) chloride solution were assessed prior to bio-
logical toxicity assays. Fifty microliters of each IrNP
solution was digested in 50 μL aqua regia (3:1 M concen-
trated nitric acid to hydrochloric acid) overnight at 70 °C
in a digestion tube. Samples were then diluted in 5.0 mL
1% nitric acid for analysis. ICP-MS was performed on an
Agilent 7900 using helium as a collision gas. Calibration
curves were prepared using 100–0.1 μg/mL iridium stock
solutions (in 1% HCl), and all samples were diluted
such that concentrations were measured in the tens
of ppb range.

Cytotoxicity Analysis
HepG2 and J774A.1 cell lines were seeded at 2 × 105

cells per well (100 μL) in a 96-well plate (DMEM with
10% FBS) and allowed to settle for 24 h. Iridium nano-
particles, iridium salt, water, or DMSO was added at
10% volume (10 μL additional volume). Cells were then
incubated for 24 or 48 h. For viability analysis, media
was removed, and cells were washed once in PBS. One
hundred microliters of culture media with 10% Alamar
Blue (Thermo Scientific) was incubated with cells for
2 h. Media was then re-plated into a black 96-well plate,
and fluorescence was read (ex530/em590) on a Tecan
M200 Pro. All data were performed in quadruplicate,
and experiments were repeated on independent days to
confirm general trends. A hemolytic assay was per-
formed as previously reported [8].

Results
Iridium Nanoparticle Synthesis and Characterization
In this synthesis, we form elemental IrNPs from iridiu-
m(III) chloride salt by reduction with a 10-fold molar
excess of borane morpholine in water. The reaction is
readily scalable to multiple liters, and particles are
formed at room temperature under aerobic conditions.
This synthetic method produces small (2–3 nm) uniform
IrNPs (Fig. 1a) with a high degree of crystallinity as ob-
served by high-resolution TEM imaging. Diffraction
patterns obtained from TEM further confirm the iden-
tity of the nanocrystals, with a line spacing of 0.22 nm
that is indicative of the diffraction grating of iridium
(Fig. 1b). The X-ray diffraction pattern closely matches
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that of elemental iridium (PDF Card No.: 9008470,
Fig. 1c). As synthesized, IrNPs are colloidally stable in
water and remain suspended in solution for several
months at room temperature (Fig. 1d).
Nanocrystals form over the course of 30 mins as ob-

served by a color change from the light yellow iridium(III)
precursor to a dark black nanoparticle solution (Fig. 2).
When exposed to a basic environment, these IrNPs form
a predicted iridium oxide, which appears blue. Acidic
conditions, such as incubation in neat nitric acid, do not
appear to impact particle crystallinity or integrity of the
material; however, it does induce flocculation and precipi-
tation. In addition, aggregation was also observed in bio-
logically relevant solutions (phosphate buffered saline and
tissue culture media) over the course of hours, suggesting
that further surface modification will be necessary for
future biomedical applications. X-ray photoelectron spec-
troscopy analysis of the IrNPs rinsed in nitric acid and
suspended in water reveals a predominant iridium(0)
surface, although peak fitting analysis of data indicates
20% surface oxidation (Fig. 3). No preferred crystallite
orientation of particles is observed, either by XRD or by
XPS. Alternatively, the introduction of a thiol surfactant
to the reaction solution during the synthesis process (prior
to nucleation) resulted in inhibition of particle formation.

Fig. 1 a Iridium nanoparticles are 2–3 nm by TEM imaging, with b with a highly crystalline lattice parameter. c XRD spectrum matches elemental
iridium, and d particles have a hydrodynamic size of 5 nm in water by DLS

Fig. 2 Iridium(III) chloride appears pale yellow with absorbance
peaks at 324 and 386 nm. IrNPs are broad-spectrum absorbers and
appear black. Iridium oxide (predicted), produced from oxidized
IrNPs treated in a basic solution, appears blue-purple purple with an
absorbance peak at 584 nm
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Iridium Cytotoxicity
We evaluated the in vitro biological compatibility of the
uncapped IrNPs and compared this to iridium(III) chlor-
ide salt in two types of mammalian cells. HepG2, a
hepatocyte carcinoma cell line, was used to evaluate po-
tential toxicity to the liver. J774A.1 macrophage cells
were used to evaluate toxicity to the mononuclear
phagocytic system. Cells were incubated with IrNPs or
iridium(III) chloride (normalized for total concentration
of iridium) for 24 or 48 h and washed to remove

extracellular iridium, and metabolic activity was evalu-
ated using the Alamar Blue assay (Fig. 4). HepG2 cells
show increased metabolic activity in the presence of iri-
dium(III) at 24 h (up to 115% viability), but the response
is mitigated by 48 h, with 500 μM iridium(III) reducing
viability to 90%. The HepG2 cells had a reduced cellular
viability, from 94 to 78% in the presence of 50 μM IrNPs
at 24 and 48 h. Interestingly, J774A.1 cells show an
increase in metabolic activity in response to IrNPs at a
50-μM concentration with a 122% viability at 24 h;

Fig. 3 X-ray photoelectron spectroscopy (XPS) of IrNPs a predominantly elemental iridium surface state, with approximately 20% oxide
surface contamination

Fig. 4 Cellular viability of HepG2 and J774A.1 cells incubated with Ir(0) nanoparticles or Ir(III) salt for 24 or 48 h. *Statistically significant values
(p < 0.05) relative to untreated cells
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however, after 48 h, normal cellular function was re-
sumed (98% viability), suggesting a transient metabolic
stimulation in response to the nanomaterials. J774A.1
cells incubated with 500 μM IrNPs for 24 h show an
apparently neutral metabolic response, but the decrease
in viability at this concentration after 48 h suggests this
is a result of toxicity and metabolic stimulation that ap-
pears as a neutral viability response. In addition, we eval-
uated the in vitro biocompatibility of IrNPs with blood
through a hemolytic assay and found IrNPs induced no
significant hemolysis when incubated with erythrocytes
in PBS at 37 °C for 1 h (Additional file 1: Figure S1).

Discussion
Various synthetic processes have been examined to pro-
duce nanoscale iridium for catalytic applications, includ-
ing reduction of iridium salts by hydrides and hydrogen
gas [9–13], UV and gamma radiation [14–17], and polyol
or alcohol reduction [18–20]. However, many of these
synthetic methods are designed for integration of irid-
ium onto a substrate or support for chemical reactions
and are not compatible with biological applications [21].
Recently, aerosolized 192Ir was employed as model nano-
scale materials for lung toxicity and was chosen for its ex-
ceptional inertness [22, 23]. The primary purpose of these
studies was to examine the clearance and translocation of
inhaled fine particulates from the lungs; however, it also
highlights the biocompatibility of this element.
We evaluated the in vitro biological compatibility of

the uncapped IrNPs and compared this to iridium(III)
chloride salt in two types of mammalian cells that are
expected to accumulate the highest concentrations of
injected nanoparticles. Iridium(III) toxicity in J774A.1
cells follows a normal toxicity dose-response curve;
100 μM iridium(III) reduces cellular viability to 93 and
66%, and 500 μM results in a 40 and 10% cellular viabil-
ity at 24 and 48 h respectively. This data reflect interest-
ing cell-specific response to iridium(0) and iridium(III),
and we anticipate further exploring these effects in vivo.
Smaller IrNPs and other poorly soluble inorganic nano-
materials are expected to be translocated to the kidney
and the liver, with a short temporal residence in the kid-
neys, and longer residence in the liver, which may fur-
ther impact cell-specific toxicity profiles. Excretion is
expected through the feces for larger iridium particles,
although we expect the extremely small size of these
IrNPs may be readily filtered through the renal system if
colloidal stability in vivo can be maintained [23].
In preparation for in vivo applications, the blood

compatibility of the IrNPs was evaluated by a hemolytic
assay. Utilizing whole mouse blood, we evaluated the
effect of these IrNPs on the rupture of erythrocytes and
potential release of hemoglobin. Although in-depth
studies of the final surface modified IrNP will need to be

evaluated, the current IrNP building blocks do not elicit
a detectable hemolytic response until extremely high
concentrations (500 μM).

Conclusions
We conclude from these studies that iridium(0) nano-
crystals can be readily synthesized by a simple aqueous
borohydride reduction of iridium(III) chloride, which
results in 2–3 nm highly crystalline nanoparticles that
are colloidally stable in water with an approximately
5 nm hydrodynamic size. During acute exposure, these
particles are non-toxic at concentrations up to 50 μM
iridium (compared to 10 μM for iridium chloride) in
hepatocytes, stimulate metabolic activity in macrophage
cells, and do not elicit a hemolytic response at practical
concentrations. These ligand-free nanoparticles may serve
as building blocks or cores for subsequent surface-modified
IrNPs for use in biological and medical applications.
Further investigation of the functional properties of these
high-density nanomaterials in the presence of X-rays or
other radiation presents the opportunity for novel
therapeutic and diagnostic agents.

Additional File

Additional file 1: Hemolytic assay—The blood compatibility of IrNPs
(0-500 μM) was evaluated by monitoring hemolysis of red blood cells. No
significant hemolytic activity was observed until the highest
concentration of 500 μM is reached. Triton-X-100 served as a positive
control. (PDF 110 kb)
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